亚洲精品国产品国语原创_AV无码免费一区二区三区_99国产精品永久免费视频_AV无码国产在线观看岛国

歡迎光臨錦工風(fēng)機(jī)官方網(wǎng)站。提供優(yōu)質(zhì)羅茨鼓風(fēng)機(jī),羅茨風(fēng)機(jī),回轉(zhuǎn)式鼓風(fēng)機(jī)星型供料器,氣力輸送設(shè)備等產(chǎn)品

Numerical of Transient Flow in Roots Blower

Numerical of Transient Flow in Roots Blower

The performance of rotary positive displacement machines highly depends on the operational clearances. It is widely believed that computational fluid dynamics (CFD) can help understanding internal leakage flows.

Developments of grid generating tools for analysis of leakage flows by CFD in rotary positive displacement machines have not yet been fully validated. Roots blower is a good representative of positive displacement machines and as such is convenient for optical access in order to analyse internal flows. The experimental investigation of flow in optical roots blower by phase-locked PIV (Particle Image Velocimetry) performed in the Centre for Compressor Technology at City, University of London provided ?the velocity field suitable for validation of the simulation model. This paper shows the results ?of the three-dimensional CFD transient simulation model of a Roots blower with the dynamic numerical grids generated by SCORG and flow solution solved in ANSYS CFX flow solver to obtain internal flow patterns. The velocity fields obtained by simulation agree qualitatively ?with the experimental results and show the correct main flow features in the working chamber. There are some differences in the velocity magnitude and vortex distribution. The flow field in roots blower is highly turbulent and three-dimensional. The axial clearances should be included, and the axial grids should be refined in the simulation method. The paper outlines some directions for future simulation and experimental work. The work described in this paper is a part of the large project set to evaluate characteristics of the internal flow in rotary positive displacement machines and to characterize leakage?flows.

Rotary positive displacement machines are widely used in many industrial fields. Depending on the application they may contain one or more rotating elements and a stator. Typical representatives of a single rotor machine are progressive cavity pumps and single screw compressors. Twin rotor machines are more common. These can be designed either with straight lobes as in roots blowers and gear pumps, or with helical lobes used in screw compressors, expanders and pumps. Screw machines can handle single phase fluids in the form of a gas, vapour or liquid or multi-phase fluids mixed from any combination of single phase fluids and solids and may operate above or under atmospheric pressures. Liquid and multiphase pumps are often configured with multiple rotors. In all these machines, gaps between rotating and stationary parts have to be maintained in order to allow a safe and reliable operation but are desired to be minimal in order to reduce leakage flows, which play critical role in theperim

performance. The challenge is to maintain the size of the gaps due to deformations of the machine elements which could be caused by thermal of physical loads.

Many researchers have studied leakage flows through clearance gaps in rotary positive displacement machines both experimentally and numerically. Numerical methods are mostly based either on chamber modelling [1], or computational fluid dynamics (CFD) model [2, 3]. In chamber models, it is usually assumed that the momentum change in the main domain is negligible due to the internal energy being dominant while the velocity of the leaking fluid is obtained based on the assumption of the isentropic flow through the nozzle. A CFD model allows more accurate calculation of velocities both in the main domain and in the leakage paths by numerically solving governing conservation equations such as mass, energy and momentum. This is of course subject to availability of an accurate numerical mesh which can capture both, the main flow domain and clearances. The latest developments in grid generation for screw machines described in detail in Rane et al. [4, 5] have led to the mesh which can be used in all flow calculations and for most rotary positive displacement machines. This grid generation methods allows use of any commercially available CFD solvers. The size of the mesh, the speed of its generation as well as the speed of calculation by commercial solvers is suitable for industrial application. However, it is yet not fully validated if it sufficiently accurately captures flow in clearances.

Numerical procedures for calculation of performance using either chamber models or 3D CFD are usually validated by measurements of the integral parameters such as the total mass flow rate and power as shown in recent studies by Kovacevic and Rane [6]. These indicate that the clearance flow is mostly well captured. However, unless the local velocities are measured, the leakage models cannot be fully validated. In addition, even the velocity distribution in the main flow of a rotary positive displacement machine has not been studied in detail experimentally. Therefore, for the full validation of numerical calculations it is required to obtain accurate measurements of the flow field both in the main working domain and in the clearance gaps of a rotary positive displacement machine.

山東錦工有限公司
地址:山東省章丘市經(jīng)濟(jì)開發(fā)區(qū)
電話:0531-83825699
傳真:0531-83211205
24小時銷售服務(wù)電話:15066131928


上一篇:
下一篇:
錦工最受信賴的羅茨風(fēng)機(jī)回轉(zhuǎn)風(fēng)機(jī)品牌
版權(quán)所有:Copright ? congsun.cn 山東錦工有限公司
備案信息:魯ICP備11005584號-5 ?
地址:山東省章丘市相公工業(yè)園
電話:0531-83825699傳真:0531-83211205 E-mail: sdroo@163.com 網(wǎng)站地圖
羅茨風(fēng)機(jī)咨詢電話
性大毛片视频| 国产精品人妻一码二码尿失禁| 国产98在线 | 免费、| 成全视频高清免费| 色屁屁www影院免费观看入口| 亚洲丰满熟女一区二区v| 东北妇女肥胖bbwbbwbbw| 国产伦精品一区二区三区妓女| 日本少妇又色又爽又高潮| 国产无遮挡又黄又爽网站| 国产综合无码一区二区辣椒| 99久久精品免费看国产| 2021国产麻豆剧传媒精品入口| 99久久久无码国产精品9| 国产精品天天在线午夜更新| 少妇下面好紧好多水真爽播放| 国产av久久久久精东av| 国精产品一区一区三区有限在线 | 性色av极品无码专区亚洲| 国内精品一区二区三区| 色婷婷综合中文久久一本| 亚洲av日韩综合一区在线观看| 伊人久久大香线蕉av不卡| 精品伊人久久大线蕉色首页| 无码少妇丰满熟妇一区二区| 十八岁污网站在线观看| 国产精品久久久久久久久久直播| 亚洲最大日夜无码中文字幕| 亚洲欧美日韩精品久久亚洲区| 亚洲精品第一国产综合亚av| 在线看片免费人成视频久网下载| 97久久精品人妻人人搡人人玩| 中国女人内谢69xxxxxa片| 四虎影在永久在线观看 | 欧美日韩国产成人高清视频| 国产婷婷色综合av蜜臀av| 一本一道久久综合久久| 欧美私人情侣网站| 在线观看热码亚洲av每日更新| 国产亚洲日韩在线一区二区三区| 亚洲欧美国产国产综合一区|